报告题目:Stability of geometric inequality in : Growth other than 2
报 告 人:张翼 副研究员(中科院数学与系统科学研究院)
报告时间:2023年11月29日(周三),9:00-10:00
报告地点:格物楼五楼数学研究中心报告厅(528)
报告摘要:
In the stability of geometric inequalities, usually one gets a growth with power 2 on the right-hand side of the inequality. For example, a remarkable result by Fusco, Maggi, and Pratelli says that, for any set of finite perimeter E ⊂ with |E| = |B| and a barycenter at the origin, one has P(E)−P(B) ≥ c(n)|E∆B|^2. This phenomenon also appears in some other follow-up work. During my talk, I introduce some recent results on the cases where the power is no longer 2 in Euclidean spaces.
报告人简介:
张翼,中科院数学与系统科学学院副研究员,国家级人才计划入选者。博士毕业于芬兰于韦斯屈莱大学(University of Jyvaskyyla),导师为Pekka Koskela教授,之后分别在波恩大学和ETH跟随H. Koch教授和菲尔兹奖得主A. Figalli教授做博士后。主要研究方向为复分析,函数空间、无穷调和以及不等式的稳定性等,已在《Duke Math. J》、《J. Eur. Math. Soc.》、《Comm. Pure Appl. Math.》、《J. Math. Pures Appl.》、《Arch. Ration. Mech. Anal.》等权威数学杂志发表学术论文二十余篇。