首页

微分方程与动力系统系列报告(2023/4/7 10:00-,报告人:黄飞敏)

发布人:日期:2023年04月04日 17:10浏览数:

报告时间2023/04/07   1000-

报告地址:格物楼数学研究中心报告厅

报告题目:Global existence of spherically symmetric solutions of compressible Euler-Possion equation for white dwarf

摘要In this paper, the three dimensional Euler-Poisson equations with gravitational potential for general pressure law is considered. It is shown that there exists a global finite-energy solution with spherical symmetry for Cauchy problem by the vanishing viscosity limit of compressible Navier-Stokes-Poisson equations with the help of the theory of compensated compactness. Moreover, the constitutive equation of white dwarf stars is included. The key point is to show the higher integrability for the velocity by constructing a special entropy via solving a kind of Goursat problem for the entropy equation. The $L^p$ compensated compactness framework for general pressure is also established.

报告人简介:黄飞敏,中国科学院数学与系统科学研究院华罗庚首席研究员,主要研究非线性偏微分方程,曾获2013年国家自然科学奖二等奖,国家杰出青年基金,美国工业与应用数学学会杰出论文奖。


上一条:分析系列报告(2023/04/12 10:00-11:00,报告人:范爱华 )

下一条:概率系列报告(2023/3/10 15:40-16:40,报告人:邹国华教授)

【关闭】 打印    收藏