首页

代数、数论与几何团队系列报告(2022/10/18 13:30-14:30,报告人:何济位)

发布人:日期:2022年10月17日 08:41浏览数:

报告时间2022/10/18 13:30-14:30

腾讯会议490-560-155

报告题目:Noncommutative Segre products

摘要In noncommutative algebraic geometry, the analogue of projective space $\mathbb{P}^{n-1}$ is the quotient category $qgr-A := gr-A/tors-A$, where $A$ is a Noetherian $\mathb{ N}$-graded Artin-Schelter regular global dimension $n$, and $gr-A$ is the category of finitely generated graded right $A$-modules, $tors-A$ is the full subcategory of finite dimensional modules. In order to understand a noncommutative version of the classical Segre embedding of $\mathbb{P}^{n-1}\times \mathbb{P}^{m-1}\to \mathbb{P}^{nm-1}$, we introduced the notion of twisted Segre products of Noetherian $\mathbb{N}$-graded algebras. It is proved that the twisted Segre product of two Koszul Noetherian Artin-Schelter regular algebras is a graded isolated singularity. In the simplest case, the Cohen-Macaulay representations of twisted Segre products of $k[x,y]$ with itself are computed.

报告人简介:何济位,杭州师范大学yl23455永利教授、副经理,2004年毕业于浙江大学数学系,获博士学位。20049月至201202月先后在复旦大学yl23455永利和比利时安特卫普大学从事博士后研究工作。浙江省“151人才(第三层次),省高校中青年学科带头人。主持国家自然科学基金面上项目2项,青年基金1项,省部级基金4项。主要研究领域为非交换代数,在Trans AMSJ Noncommut GeomMath ZIsrael J MathJ Algebra、中国科学等国内外重要期刊上发表学术论文30余篇。




上一条:组合与运筹系统报告(2022/10/19 20:30-21:30,报告人:康丽英)

下一条:麓山数学教育论坛(第二十四讲,2022/10/22 19:30-21:30,报告人:吴立宝)

【关闭】 打印    收藏