报告时间:2022/10/18 13:30-14:30
腾讯会议:490-560-155
报告题目:Noncommutative Segre products
摘要:In noncommutative algebraic geometry, the analogue of projective space $\mathbb{P}^{n-1}$ is the quotient category $qgr-A := gr-A/tors-A$, where $A$ is a Noetherian $\mathb{ N}$-graded Artin-Schelter regular global dimension $n$, and $gr-A$ is the category of finitely generated graded right $A$-modules, $tors-A$ is the full subcategory of finite dimensional modules. In order to understand a noncommutative version of the classical Segre embedding of $\mathbb{P}^{n-1}\times \mathbb{P}^{m-1}\to \mathbb{P}^{nm-1}$, we introduced the notion of twisted Segre products of Noetherian $\mathbb{N}$-graded algebras. It is proved that the twisted Segre product of two Koszul Noetherian Artin-Schelter regular algebras is a graded isolated singularity. In the simplest case, the Cohen-Macaulay representations of twisted Segre products of $k[x,y]$ with itself are computed.
报告人简介:何济位,杭州师范大学yl23455永利教授、副经理,2004年毕业于浙江大学数学系,获博士学位。2004年9月至2012年02月先后在复旦大学yl23455永利和比利时安特卫普大学从事博士后研究工作。浙江省“151人才(第三层次)”,省高校中青年学科带头人。主持国家自然科学基金面上项目2项,青年基金1项,省部级基金4项。主要研究领域为非交换代数,在Trans AMS、J Noncommut Geom、Math Z、Israel J Math、J Algebra、中国科学等国内外重要期刊上发表学术论文30余篇。