首页

代数、数论与几何研究团队系列报告

发布人:日期:2022年03月14日 14:48浏览数:

报告时间:2022/03/21 09:00-12:00

报告地址:腾讯会议:232-384-814

报告一:A geometric model of module categories of skew-gentle algebras

摘要This is based on my work joint with Ping He and Bin Zhu. Skew-gentle algebras are a class of representation-tame algebras, whose indecomposable modules and morphisms can be described combinatorically. In this talk, each skew-gentle algebra is associated to a partial triangulation of a punctured marked surface. Based on this, each indecomposable module is associated to a tagged curve and each homomorphism space has a basis formed by tagged intersections. As an application, we give a geometric interpretation of support tau-tilting modules over a skew-gentle algebra.

报告人简介周宇,清华大学助理教授,主要从事代数表示论及其相关领域的研究。在Adv. Math., Compos. Math., Trans. Amer. Math. Soc.,Int. Math. Res. Not. IMRN, J. Lond. Math. Soc.等知名数学杂志上发表论文十余篇。

报告二:generic bases for cluster algebras

摘要:In this talk, we give a brief introduction to the generic bases for cluster algebras. They are generalization of Lusztig’s dual semicanonical bases for universal enveloping algebras. We explain that, for a cluster algebra arising from marked surfaces,  its generic basis consists of the bangle diagrams on the surface.

报告人简介:覃帆,上海交通大学长聘副教授。主要研究代数和表示论,特别是和丛代数(cluster algebra)相关的代数表示论、几何表示论和范畴化。

报告三:Geometric Classification of spaces of totally stable stabiltiy conditions

摘要:We classify non-empty space ToSt D of totally stable stabiltiy conditions on a triangulated category D, where D must be D(Q) for some Dynkin quiver Q. To do so, We construct geometric model for D(Q) and realize ToSt D(Q) as moduli space of certain stable h_Q-gons for Coxeter number h_Q. In the talk, I will focus on the exceptional cases. This is a joint work with Zhang Xiaoting.

报告人简介:邱宇,清华大学数学科学中心教授。研究方向为代数表示论与几何拓扑;着重研究Calabi-Yau/Fukaya范畴,稳定条件空间,辫子群和丛理论等。在Invent. Math., Math. Ann., Adv. Math., Compo. Math.等杂志发表论文十余篇,2016年获得国际代数表示论会议奖。


上一条:麓山数学教育论坛(第十七讲)

下一条:代数、数论与几何团队系列报告

【关闭】 打印    收藏