报告人:廖灵敏 副教授(法国巴黎第十二大学)
时 间:2021年10月6日 16:00-17:00
地 点:腾讯会议ID:970 802 599
报告摘要:The shrinking target problem studies the size of the set of points in a metric space whose orbits under a transformation hit a family of shrinking balls infinitely often. We consider a variation of such problem by allowing the radius of the shrinking balls depending on the path of the point itself in affine iterated function systems. It turns out that generically the Hausdorff dimension of this path-dependent shrinking target set is given by the zero point of a certain limsup pressure function. This is a joint work with Henna Koivusalo and Michal Rams.
报告人简介:廖灵敏,男,法国巴黎第十二大学副教授,博士生导师。研究领域为度量数论与动力系统。主持或参与法国国家科研计划,法国台湾幽兰合作计划,法国中国蔡元培合作计划,法国韩国星合作计划,法国波兰钋合作计划等。曾应邀在瑞典,波兰,韩国,巴西,马来西亚,台湾等国家和地区访问讲学。在J.Eur.Math.Soc., Math.Ann., Adv. Math., Int.Math.Res.Not., Trans.Amer.Math.Soc., Ergod.Theory Dyna.Syst.等在内的国际期刊发表论文37篇。