学术报告
报告题目:On the 2k-th order of convergence of the C0-Pk-spline finite element method
报告人:张上游 教授 (University of Delaware)
报告时间:2020年1月11日 下午3点
报告地点:格物楼307
报告摘要:The standard C0-P1 finite element solution converges at order 2 in L2 norm, and at order 2 (superconvergence) also in H1 norm. But the standard C0-Pk finite element solution converges at order k plus 1 in L2 norm, and at order k (no superconvergence) in H1 norm. It is proved that the C0-Pk spline finite element solution converges at order 2k in both L2 norm and H1 norm, i.e., extending the C0-P1 finite element result to any polynomial degree k. The novelty in the proof is an unconventional superconvergence analysis using eigenvalue approximation error estimate.